
heat of melting; N, number of grid nodes over space; n, number of grid nodes over time; h, grid step over space; z~r, 
grid step over time; ~, solution of the conjugate system; s, number of iteration. 
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INERTIA OF MEASUREMENTS WITH "AUXILIARY-WALL" 

TYPE HEAT METERS 

G. N. Dul'nev, N. V. Pilipenko, and V. A. Kuz'min UDC 536.6 

The article examines the problem of thermal inertia on the basis of an "auxiliary-wall" type heat meter. It 
demonstrates the boundaries of applicability of the approximate relationship for calculating non-steady-state 
heat fluxes. 

Heat meters of the "auxiliary wall" type are widely used for measuring heat fluxes, and schematically they are often 
represented in the form of a plate attached to a semibounded body. It  was shown in [ 1 ] that for measuring non-steady- 
state heat fluxes with such heat meters, it is necessary to know the temperature gradient At(r) on the sensor with known 

thickness 6, and also the criterion • = ---=" a~, characterizing the thermophysical properties of the heat meter and the 
2t F a 2  

half-space. The same article also presented the theoretical relationships for determining the flux q&) in some special cases 
(• 0, 1, oo). For determining a variable flux, it is necessary in the general case (with arbitrary values of • to use the 
relationship (I) whose derivation is presented in Appendix 1: 

q' ( r ) -  k~ { 1 + 
I T r a i t  

q (~) = q' (x) -k q" (T); 

n ~ l  

(1) 

(2) 

0 n ~ l  

(3) 

• . , F a ~ -  A - -  6_ . 
zi l / 
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However, there are also cases when formulas of  the type (1) are difficult to use. For instance, in systems of auto- 
matic control of  dynamic thermal processes it is preferable to use relationships of  the following type [2, 3] 

q (T) = )'_t At (T), (4) 
6 

i.e., with direct proportionality between the flux q(r) and the easily controlled signal At(r). In this case, calculations by 
formulas of  type (4) may lead to large errors caused by the thermal inertia of the heat meters. It is accepted practice to 
characterize the thermal inertia by the parameter 77 equal to the time interval within which the value of the time-invariable 
flux, measured with the heat meter, is 0.63 of the flux absorbed by the heat meter at that same instant. It is known that 
the magnitude of ~ is greatly affected by the relationship of the thermophysical properties of the heat meter and of the 
base on which it is situated [3]. It is therefore recommended to produce and place the heat meter in such a way that its 
thermal inertia is much smaller than the frequency of the measured flux. 

In the literature there are recommendations indicating the possibility of  using relationships of  type (4) in some 
specia l  cases [1, 2]; on the other hand, we lack substantiated correlations between inertia, frequency, and error of measure- 
ment of  an arbitrarily changing flux q(r) which could already be used at the stage of designing the heat meters. The 
parameter of  thermal inertia ~ is usually determined experimentally by suddenly exposing the heat meter to a constant heat 
flux. 

We will examine the analytical method of determining the parameter ~. For this, we turn to relationships (1)-(3) 
and show first that after some time r = 7-* the coefficient K o in (2) assumes the constant value K o = const. We transform 
expression (2) for the two boundary cases • = 0 (heat meter on an insulator) and ~--  oo (heat meter on an ideal conductor): 

1 ) •  

2 ) •  

{ ( q0 (z) = ~' 1 2c- 2 V exp M (T) ; 
t~t~ 1 

(5) 

q',(T) = ;~ "1 --l- ~ [1 -+-, (--1) ~1 exp nZAZ At(r) Z, 1 + 2  exp - -  At(x). (6) 

n~l  n~ l  

In the theory of  elliptical functions, the following expression, obtained on the basis of Poisson's summation formula 
[4], is used: 

Z exp(--/nZ) = ~ / / ' t e x p  ( n~Z / 

If  in (7) we put t = 6 2/4a~ r, we have 

On account of  evenness, the exponent under the sign of summation is 

t > O. (7) 

~ exp ( 4n2n2aW~. (8) 

I~2 ~ exp (--4aS~nZ,---~) : 2 v~a,T [I-I-2 ~ exp ( 4~anzaIT'~l " S z  ] j  (9) 

In that case 

n=l 

F/2~ 2 

__ ~'i 21/~--~--t~ {1 +2~ exp ( 4n2n2aiT~tAt 
1, ./~al~ 6 . ~ 62 ] ]  (~)=  

n~l  

n~ l  

4 ~27/2 ) }  
A z ~ At(~) = K,(T) At(x). 

( 1 0 )  - 
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Fig. 1. Comparison of  the specified (curves 
1, 3; r 1 = 0.5 sec'l  ; r 3 = 0.07 sec "l) and 
the calculated (curves 2, 4) heat flux; q, 
W/m2; r, sec. 

In (7) we substitute t = 82/al  r ,  and after some simple transformations we obtain 

q 2 ( z ) = - ~ -  exp A ~ �9 } A t ( z ) = K ~ ( ~ ) A t ( z ) .  (11) 

,,=i 

It follows from expressions (10) and (11) that  after some time r, the coefficients K 1 and K 2 assume a constant 

value K i = (2X~/6) ( ~  = 0), K 2 = X t /6  ( • = oo). On a computer,  numerical calculations by Eq. (1) involving actual heat 

meters type DTP-02 [3] (5 = 1.8"10 -3 m; X 1 = 0:7 W/mK;a  = 0.45"10 -6 m2/sec), situated on a base (• =35) ,  were carried 

out. The results of  the experimental investigations showed that the time of  establishing K 0 = const, equal to r* = 3.5 sec, 
did not depend on the regularity of  the change of  the incident flux for the boundary cases • = 0, • = co 1 < ~* % 4c. 

Thus, on the basis of  analytical and experimental investigations it may be asserted that after a certain time interval 
r = r*, the coefficients Kj = K 0 ; Ka ; K 2 in expressions (2), (10), (11) assume a constant value, and this time does not  
depend on the regularity of  change of  the incident flux. 

From relations (2), ( I0) ,  (11) we find the time r = r* and take it equal to the inertia parameter  r/, i.e., 

r* = Z[KS . . . . .  t = 11" (12) 

A substantiation of  equality (12) may be the above-mentioned analytical investigations of  boundary cases, and also 
the results of  a computer  experiment which was carried out according to the following procedure: 

a certain regularity of  change in the flux q(r) incident on the heat  meter (in particular also q = const) was a) 
specified; 

b) 

c) 
according 

d) 

the general form of  the function At(T) = f[q(r)] (see Appendix 2) was established; 

the numerical values were calculated of  At(r) for an actual heat meter  and the conditions of  its disposition 
to the function (XI); 

the regularity of  the change of  q(r) was established by Eq. (4) in which the value At(r) from the previous point  
was substituted; 

e) the specified (standard) flux was compared with the flux calculated by Eq. (4), and the error of  calculating 
Aq(r) was determined; 

f) on the basis of the permissible error, the boundaries of  applicability of  the relation (4) were established. 

Figure 1 presents the results of the investigations for the nonperiodic regularity of  change of  the heat flux with 
different frequencies, from which it follows that the calculation error for co = 0.5 s e c  -1 exceeds 50% and drops to less than 
half when the frequency is ~o = 0.07 sec -1 . 

Thus, when the frequency of  the flux incident on the heat meter is known, the expected error of  measuring q(r) 
can be calculated at the design stage. 

Figure 2 shows the results of  calculating by relation (11) (curve 2) and by relation (4) (curve 1). The value At(r), 
necessary for the calculation, was determined by formula (XI) with the specified constant flux q = 103 W/m 2' . It can be 
seen from Fig. 2 that after a certain time interval (r  = 3.5 sec), curves 1 and 2 coincide (the divergence does not exceed the 
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Fig. 2. Values of  the heat flux calculated 
by different relations: 1) Eq. (4); 2) Eq. (3). 

error o f  computer calculation). And in all cases, this time is equal to the parameter 77 characterizing thermal inertia. 

Investigations according to the examined procedure also make it possible to establish the boundaries of  applicability 
of  the reactions type (4). For this, it is necessary already at the design stage to calculate the value q"(r) and to compare it 
with the magnitude of  the permissible error. If  q"(T) ~< Aq(r), then the further determination of the flux q(r) can be 
carried out by Eq. (4). 

In conclusion we want to point out that for determining nonsteady-state heat fluxes with the aid of  "auxiliary-wall" 
type heat meters placed on massive bodies it is necessary, in the general case, to use Eq. (1). I f  for some reason or other 
relation (4) has to be used, then the expected error has to be previously estimated. 

A P P E N D I X  1 

space): 
It was shown in [1] that the mathematical statement of  the solved problem has the form (model - plate in a half- 

0,, ( 0 t, ) 
- -  al i l;  2,  

0~ ~--~-x~ ' 

. Ott l~ 
q ( x ) = - - ~ t  O---x =_~ ' 

)~ Oil I ~ ~2 012 x=O t G -  ~=0  ~ , t ,  Ix=o = t~ I,:=o ; 

O& = 0 ,  or & l ~ =  = const, 
Ox x~| 

til~=o=t~, i = l ;  2. 

According to [3], the solution of  (I), (II) is 

T 

q (~) = ,p ( ,)  At (,) - .[ [At b )  - -  At (t)l 0q~ ( ,  - -  ~) d~,  
0 - 0~ 

where ~(~) is the original of  the expression 

(I) 

(II)  

(III) 

F (s) 1 _ )~t sh A 1 % - +  z ch A -V'-s ( IV)  
sYq(s) 1/a'~ l ' - s - ( •  

To find the original of  g(~), we represent F(s) in the form of the sum of two components: 

~t sh A 1. s X~ • ch A 1. s 
F(s) }./~- 1 . s ( •  + V'a---~ - r ' s ( •  

After expansion of  the values of  the hyperbolic functions and some transformations, the first component can be written in 
the form 

~.i sh A 1/-s ~i 1 1 + exp (--  A I s ) 

}~at 1/s ( •  1) 1/a-~s x + l  

We use the expansion [5]: 

1 + n - -  1 e x p ( - -  A I. s) 
•  

( v )  
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1 § m exp (-- A l '  s ) (-- 1)" exp (-- nAI 7)  m , 
l i f o  

•  
I n  - -  

•  

(vi) 

and represent (V) in the form 

Xl 1 == - - - - - ~  - -  

I a~ z ~ 1 

)~: sh A r 7 
t a~ I s ( •  7 + e h A i  s - - l )  

1 .~' e x p ( - - A l s )  Z • 1 "  
| s ( - -1)~exp(--nA'  s ) ( ~ ; )  " 

tZ~O 

We also proceed analogously with the second component. 

(VII) 

After that, the expressions for F(s) Can be written as follows: 

,y_.{ F(s) I a i s  (• [ 1 - k e x p ( - - A l  s )  , 2- 
n ~ o  

q - z [ 1 - - e x p ( - - A  I s ) ] ] ( - - l )  ' ~ e x p ( - n A l  s) { •  I'~n < 
t ~ - T )  ' 

n 

Z ('~- 1]'1 -}-, 2 z e x p ( - - A l  s ) e x p ( - - n A i  s) . ( - - 1 ) s \ •  

(VIII) 

We find the original of (VIII), substitute into (Ill), and obtain the theoretical relation for determining the sought flux: 

f aa~x(z-~l)  (-- 1)'~(z-F1)(~-@~) exp --  4x J + 
n ~  o 

tz 

_F [(__ I)'~(1 • 2 1 5  "2_ ~ [ • 2 1 5  

/ = 0  

T 

- -  4m + 4 1 )~a; (• 1) [At (w) --  At (~)] • 
0 

( ~  - -  ~) '  

i ~ , _ _  ~ ' , t /  {<-,,.,(l x 
(ix) 

X exp 4 ( r - -  ~)] q- ( - -  t)"(1 --• t•  q- 1] 2• (-- 1)i • 
i = 0  

• \ ~ )  J [(nq-1)2AZ--2(~--~)lexp 4(T--~) v 

We remove (~4 + 1) to behind the signs of summation and integration, and we also carry out term-by-term composition 
under the signs of summation. As a result of these operations, expression (IX) is greatly simplified and assumes the form 

q ( z , =  ~q. { 1 - c - ~ [  1 2 c - / 1 - - •  nZAa)} At('c) ~ ,-- , - - " ~ '  ____)h i [A/(~)--At(~)]: 
! nai m . . k 4T 2 I aai . I' (m--~)a 

n ~ t  0 

1 + (~----~/"I"~A~--2- (~-~) ~xp [ 
\• 1/ J 2(~--~) 

nZA2 ]/ 
4(-,-~--g)!l d~. 

N 

(x) 
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APPENDIX 2 

Using the same substitution of (I), (II), we may state that 

at(r) = f I'aS ~ ~(~T])(~-~){(1-~) 
U 

~ 

- -  2 exp 4a, (~ - -  ~)) -~- ( 1 + z) + (1 - -  z) exp • 

tz=l 

a t (T- -  ~) \ - -  -a~-(r :-~)-} - 2 e x p  4a,(T--  ~) ( ~ x )  I q(g) d~" 

(xI) 

NOTATION 

q(r), non-steady-state heat flux through the heat meter; X 1 , ( / 1 '  6 ,  thermal conductivity, thermal diffusivity, and 
thickness of the heat meter, respectively; X2. a2, thermal conductivity and thermal diffusivity, respectively, of the base of 
the heat meter; At(r), temperature gradient over the thickness of the heat meter; ~7, index of thermal inertia; r, time; s, 
parameter of Laplace transform; t 1 (x, r), temperature of the heat meter at point x; t2(x, r), temperature of the base; te, 
ambient temperature; Yq(S), transfer function from the heat flux q(r) to the temperature gradient At(r). 
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ACCURACY OF TEMPERATURE MEASUREMENTS IN DETERMINING 

THE THERMAL CONDUCTIVITY OF SUBSTANCES BY STATIONARY 

METHODS IN THE RANGE OF MODERATE TEMPERATURES 

O. A. Sergeev UDC 536.24.08 

An empirical comparison is made of the accuracy of platinum-rhodium-platinum and Chromel-Alumel 
thermocouples in determining the thermal conductivity of substances. 

The main errors present in determinations of thermal conductivity are connected with temperature measurements. 
The most important of these errors, in turn, is that arising in the measurement of the temperature difference0, which is 
necessary to determine the temperature gradient in the specimen. This difference is three-dimensional [1 ] and, when 
measured with a differential thermocouple, is calculated as the ratio of the readings of the thermocouple Ay to its sen- 
sitivity t3. These values are measured with a high degree of accuracy by modern electrical instruments. The low accuracy 
in the measurement of O is connected [1 ] with the process of determining/3. One of the main reasons for this is that, in a 
given thermophysical experiment, the thermocouple may be used under conditions which differ sharply from those under 
which it was calibrated on special units in the thermometric laboratory. In particular, this difference leads to a situation 
whereby the nonuniformity of the thermoelectrodes in these two cases is manifest in different temperature fields and is a 
source of unknown (with respect to both sign and magnitude) additional emf's in the thermocouple circuit. 
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